a-:.;\\
EWCP
I .ol Data Models and |/O
ATPESC 2018

Rob Latham
Math and Computer Science Division

Argonne National Laboratory

Q Center, St. Charles, IL (USA)
August 3, 2018

. 7R U.S: DEPARTMENT OF Office of N 'SE".;
exascaleproject.org ' /ENERGY | science ITVA O

Plan of attack

Bottom-up tour of I/O interfaces
— POSIX routines called by MPI-10 implementations
— Parallel-NetCDF routines build on top of MPI-IO

PNETCDF HDF5

Simple toy programs
— Refining example several times throughout day MPI-IO

— We can apply these lessons to your own code in

evening session POSIX

Demonstrating some tools for understanding
what’s going on

“Game of Life” for your reference

-~
U.S. DEPARTMENT OF Office of e \\ EXASCALE

L @) Science & — g
© ENERGY (o

Hands on materials

» Code for this ...
— Simple array 1/O

« ... and other sections available on our gitlab site:
— Game of Life 1/0O
— Darshan
— Burst buffers
— Globus

o https://xqgitlab.cels.anl.qov/ATPESC-10/hands-on

 I'm going to give you a few minutes to try each hands-on. Can continue working
In evening session if you need more time.

\\xitr“‘i"'"”\'i's;,_¢ U.S. DEPARTMENT OF Oﬂ-’lce Of

E N E RGY Science — \(

EEEEEEE

https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on
https://xgitlab.cels.anl.gov/ATPESC-IO/hands-on

Operating on Arrays

 Arrays show up in many scientific
applications

— Matrix operations
— Particle maps

— Regions of space
— Time series

— Images

* Probably your real application more
complicated but an array or two (or more) is
iIn there somewhere, I'd wager.

—
U.S. DEPARTMENT OF Offlce Of — \\ I—J EXASCALE

ENERGY Science _\(__) PRCECT

PROJECT

Decomposition

« How do we physically access locally
parts of a logically larger distributed
array in parallel...

— Piecewise?
— Chunks?
— Rows?
 Largely dictated by application
algorithm needs
— E.g. volume rendering math requires
chunks not rows.

» Choice impacts memory and 1/O
performance

U.S. DEPARTMENT OF Ofﬁce of

| EN ERGY Science

)

(=

\\) exmsceLe
) I COMPUTING

PROJECT

Supporting Checkpoint/Restart

* For long-running applications, the cautious user checkpoints

« Application-level checkpoint involves the application saving its own state
— With a bit of extra effort, can be portable

« A canonical representation is preferred
— Independent of number of processes

« Restarting Is then possible
— Canonical representation aids restarting with a different number of processes

« Also eases data analysis (when using same output)

:/‘x‘""‘"”’\f\'f{\z,% U.S. DEPARTMENT OF Oﬁlce Of

EN ERGY Science _\(

"— \
\ EXASCALE

) —) COMPUTING
PROJECT

Defining a Checkpoint

* Need enough to restart

— Header information
» Size of problem (e.g. matrix dimensions)
» Description of environment (e.g. input parameters)

— Program state
» Should represent the global (canonical) view of the data

* |deally stored in a convenient container
— Single “thing” (file, object, keyval store...)

« If all processes checkpoint at once, naturally a parallel, collective operation

\‘;:L‘i'"w\'i'f{;% U.S. DEPARTMENT OF Ofﬁce Of

W ENERGY science _\(

"‘ \
\ EXASCALE

) —) COMPUTING
PROJECT

HANDS-ON 1: simple data descriptions

« Consider an application that operates on a 2-d array of integers.

1. Write code declaring a 2-d array of integers
Probably want to allocate on heap, not stack
« Later steps will be easier if you make it a single allocation

2. Define a data structure describing the experiment
 E.g. C struct with row, column, iteration

« Use whatever language you like...
— ... but Phil and | can only be helpful if you use C

« Source “setup-env.sh” to load necessary modules

\%5"‘"“72{.\":},% U.S. DEPARTMENT OF Oﬁ-’lce Of

EN ERGY Science _\(

"— \
\ EXASCALE

) —) COMPUTING
PROJECT

HANDS-ON 1 solutions

C struct holding metadata

typedef struct {
int row;
int col;
int iter;

} science;

Do this: index into a single big allocation

int *array;
array = malloc (XDIM*YDIM*sizeof (*array));

Don’t do this: N allocations will be slower and harder to describe

/* not MPI-friendly: describing this memory region will require
* a more complicated data type description */
int **annoying;
annoying = malloc (YDIM*sizeof (*array));
for (int i1=0; 1i<YDIM; i++)
annoying[i] = malloc (XDIM*sizeof (*array)):;

\o‘-‘* » U.S. DEPARTMENT OF Oﬁ-'lce Of

ENERGY Science

—_

—-—

&

\\) EXASCALE
) COMPUTING
PROJECT

POSIX I/O

« POSIX is the IEEE Portable Operating System Interface for Computing
Environments

« “POSIX defines a standard way for an application program to obtain basic
services from the operating system”

— Mechanism almost all serial applications use to perform I/O

« POSIX was created when a single computer owned its own file system

—

"— \
\ EXASCALE

) —) COMPUTING
PROJECT

AP R, U-S- DEPARTMENT OF Office of

EN ERGY Science _\(

10

Deficiencies In serial interfaces

POSIX: FORTRAN:

fd = open(“some_file”, O_WRONLY|O_CREAT, OPEN(10, FILE=‘some_file’, &
S_IRUSR|S_IWUSR); STATUS=“replace”, &

ret = write(fd, w_data, nbytes); ACCESS=“direct”, RECL=16);
ret = 1seek(fd, O, SEEK_SET); WRITE(10, REC=2) 15324

ret = read(fd, r_data, nbytes); CLOSE(10);

ret = close(fd);

 Typical (serial) I/O calls seen in applications
* No notion of other processors

* Primitive (if any) data description methods

* Tuning limited to open flags

* No mechanism for data portability
— Fortran not even portable between compilers

‘\1¢ U.S. DEPARTMENT OF Office of

EN ERGY Science _\(

"— \
\ EXASCALE

) —) COMPUTING
PROJECT

HANDS-ON 2: simple I/O

« We haven't talked about MPI-1O or I/O libraries, but we can still checkpoint.
— Serial I/O, not parallel

* Implement “write_data”
— Will create file and fill in data
— Prototype:

* int write data(char *filename)

— Use system calls (open(), write(), close()) , not“stdio” calls (fopen(), fwrite(),
fclose()): will map more closely to MPI-10 later

— How will you know it worked?
— We are going to repeatedly revise “write_data” (and later “read_data”) with each exercise
« Software engineering: hide details

S&w Y-S DEPARTMENT OF Oﬁ-’lce Of \ ExASCAL =

T
@ENERGY sice E(C)P 2255
Science I\ PROJECT

12

13

RUNNING

« Submit to the ‘training’ queue

* I've provided a ‘submit.sh’ shell script
— gqsub -g training submit.sh <program> [filename]
 If you don'’t give [filename], then ‘testfile’ used.

« Which Theta file system to use?
— Tried to make scripts do right thing by default
— Please don’t use the NFS-mounted home directory
— submit.sh should already point you to the right lustre directory

\‘;:L‘i'"w\'i'f{;% U.S. DEPARTMENT OF Ofﬁce Of

ENERGY Science

J EXASCALE
COMPUTING
PROJECT

Solution fragments:

int write data(char *filename) Reading a binary file: “cat” won'’t work.

{ Could write a ¢ program to read. Several
science data = | utilities available. | like ‘od’: historically it
.row = YDIM, only did an “octal dump”. The (t)ype
_col = XDIM, argument can select (d)ecimal
.diter = 1
. % od -td testfile
’ 0000000 1 5 1
0000020 1 2 3
int *array; 0000040
int f£d;
int ret=0;
array = buffer create(0, XDIM, YDIM);
fd = open(filename, O CREAT | O WRONLY,
S IRUSR|S IWUSR) ;
ret = write(fd, &data, sizeof (data));
ret = write(fd, array, XDIM*YDIM*sizeof (int));
ret = close (fd);
return ret; 3 U.S. DEPARTMENT OF Oﬂ-‘lce Of ’;\\\ ExASCAL =
} ENERGY Science _\() - PROoECT

HANDS-ON 3: send-to-master

 Parallel program, but serial I/O

1. Write data() should take an MPI
Communicator

2. Call MPIL_Init() and MPI_Finalize()
3. Use MPI_Gather to collect all data onto rank O:

* Only rank O does I/O; writes header and all
array information

* What's good about send-to-master? What's
bad?

U.S. DEPARTMENT OF Offlce Of

15 ENERGY Science _\(_)_J PRCECT

-
\\ EXASCALE

16

MPI Comm rank (comm, &rank);

MPI Comm size (comm, &Nnprocs);

/* every process creates its own buffer */
array = buffer create(rank, XDIM, YDIM);

/* and then sends i1t to rank 0 */
int *buffer =
malloc (XDIM*YDIM*nprocs*sizeof (int)) ;

MPI CHECK (MPI Gather (
/* sender (buffer,count,type) tuple */
array, XDIM*YDIM, MPI INT,
/* receiver tuple */
buffer, XDIM*YDIM, MPI INT,
/* who gathers and across which context */
0O, comm))

o‘f‘-‘i""”’fﬁx% U.S. DEPARTMENT OF Oﬁ-'lce Of

ENERGY Science

Solution fragments: MPI_Gather, write larger data from rank O

\\ EXASCALE

) —) COMPUTING
PROJECT

17

Solution fragments: writing from rank O

if (rank == 0) {
/* looks like serial with more data */

/* writing a global array, not just our
local piece of it */

data.row = YDIM*nprocs;

data.col = XDIM;

data.iter = 1;

ret = write (fd, &data, sizeof (data)):;

ret = write (fd, bu er,
XDIM*YDI ' zeof (int)) ;

ret = close (fd);
return ret;

\‘\‘3’\"!)"1"-'1,’ U.S. DEPARTMENT OF Oﬁ-'lce Of

ENERGY Science

\
EXASCALE
\) —) COMPUTING

PROJECT

18

Other questions:

 Lots of machines (your laptop; Theta) represent integers as 32 bit little endian.
What if you ran this code on Mira?

» We wrote row-wise. What if you wanted to write a column of data?

 What impact would a header have on data layout? Are there other options?

\‘y\,‘f"ly\'\l’:{% U.S. DEPARTMENT OF Oﬁ:lce Of

7 A\ —
EN ERGY Science _\(\) I_) PROOEET

19

Understanding I/O

* Instrumentation:
— What do we measure?
— How much overhead is acceptable and when?

« Analysis:
— How do we correlate data and extract actionable information?
— Can we identify the root cause of performance problems?

* Impact:
— Develop best practices and tune applications
— Improve system software
— Design and procure better systems

S —

£ \{'\'ff/.‘; U.S. DEPARTMENT OF Ofﬁce Of

PENERGY | science _\(\) — e

Project began in 2008, first public software

What is Darshan? release and deployment in 2009

Darshan is a scalable HPC 1/O characterization tool. It captures an accurate
but concise picture of application I/O behavior with minimum overhead.

* No code changes, easy to use

— Negligible performance impact: just “leave it on”
— Enabled by default at ALCF, NERSC, NCSA, and KAUST
— Installed and available for case by case use at many other sites

* Produces a summary of 1/O activity for each job, including:
— Counters for file access operations
— Time stamps and cumulative timers for key operations
— Histograms of access, stride, datatype, and extent sizes

:/‘x‘""’my\ﬁ'ﬁ{@ U.S. DEPARTMENT OF Ofﬁce Of

@ENERGY sconce

20

"— \
\ EXASCALE

) —) COMPUTING
PROJECT

20

Darshan design principles
« The Darshan run time library is inserted at link time (for static executables) or
at run time (for dynamic executables)
* Transparent wrappers for I/O functions collect per-file statistics
o Statistics are stored in bounded memory at each rank

At shutdown time:
— Collective reduction to merge shared file records
— Parallel compression
— Collective write to a single log file

 No communication or storage operations until shutdown

« Command-line tools are used to post-process log files

AP R, U-S- DEPARTMENT OF Office of

EN ERGY Science _\(

"— \
\ EXASCALE

) —) COMPUTING
PROJECT

21

21

22

ior (6/29/2017) lof3
L]
J O B an aI yS I S eX al I I p I e [jobid: 5598836 [uid: 52352 [nprocs: 256 [runtime: 4 seconds |
1/0 performance estimate (at the MPI-IO layer): transferred 79456 MiB at 8083.73 MiB/s
1/0 performance estimate (at the STDIO layer): transferred 0.1 MiB at 3.86 MiB/s
Average | /0 costper process VO Operation Counts
100 4500
4000
Example: Darshan-job-summary.pl fe
. i 515«}
produces a 3-page PDF file ; -
500
summarizing various aspects of 1/O he e o S
MPI-IO Indep. sammes STDIO we——
performance
MPI-IO Access Sies £
,,,,,,,,, T, o, ’@Y;“’q:q’z‘;} ’::;‘
Estimated performance s e
1 I File C S
Percentage of runtime in /O | it OB 5 st
(poo;l];'?z? ;:;c;sg;&zes type | number of files | avg. size | max size
. . access size | count mctlal Dlpefrjlfd zgg }gﬂ }gﬁ
read-only files
Access size histogram Bt I B
d/write fil
. iggiﬁzfl\;gxaﬁiiﬁér; Dfi\'en in reacr::;:g ﬁl:: 222 1613 1613
Access type histograms
/global/ul/p/pearns/working/other/nersc-darshan-seminar-2017/ . /ior/src/ior f ior-uniq.conf
File usage
» U.S. DEPARTMENT OF O-ﬁ-'lce Of —

ENERGY Science

=

I_J

EXASCALE
COMPUTING
PROJECT

SYSTEM analysis example

« With a sufficient archive of performance
statistics, we can develop heuristics to
detect anomalous behavior

= This example highlights large jobs that spent a
disproportionate amount of time managing file
metadata rather than performing raw data transfer

» Worst offender spent 99% of I/O time in
open/close/stat/seek

» This identification process is not yet automated,;
alerts/triggers are needed in future work for greater
impact

Carns et al., “Production 1/0O Characterization on the Cray XEG6,” In
Proceedings of the Cray User Group meeting 2013 (CUG 2013).

23

Example of heuristics applied to a population of
production jobs on the Hopper system in 2013:

JOBS IDENTIFIED USING METADATA RATIO METRIC

Thresholds

Total jobs analyzed

Jobs matching metric

Unique users matching metric
Largest single-job metadata ratio

meta_time / nprocs > 30 s
nprocs > 192
metadata_ratio > 25%
261,890

252

45

> 99%

Znﬁ s metadata_time

n=1

Znﬁ les metadata_

n=1

‘>\>\‘—*"‘!’{'\'~:3¢¢ U.S. DEPARTMENT OF Oﬂ-’lce Of

ENERGY Science

time + I0_time

T \
\ J EXASCALE
) COMPUTING

PROJECT

Typical deployment and usage

« Darshan usage on Mira, Cetus, Vesta, Theta,

Cori, or Edison, abridged: I
. Currently Loaded Modulefiles:
— Run your job nodules /3.2.10.5
. nsg/1.2.
— If the job calls MPI_Finalize(), log will be stored in intel/17.0.2.174
DARSHAN_LOG_DIR/ [dayl o etvonkeart s
- If your job does not call MPI_Finalize, you cannot use Darshan. e
Check out Tau. ugni/6.0.15-2.2 .
pmi/5.0.10-1.0000.11050.0.0.arti
— Theta: /lus/theta-fsO/logs/darshan/theta renift LT
— Use tools (next slides) to interpret log S s
i B y e dvs/2.7_2.1.68 _g779d71a-1.0000.779d71a.2.34
* On Titan: first e asieatbr-2. 265
atp/2.0.3
« More details: i£§5g::a2§§;{?@-3
— https://www.alcf.anl.gov/user-guides/darshan Bl A
— www.nersc.gov/users/software/performance-and-debugging- 3) darshan/3.1.4
tools/darshan/

cxw> U.S. DEPARTMENT OF Oﬁ-’lce Of \ ExXASCALE

> —
ENERGY Science _\(\) — ERsEre

https://www.alcf.anl.gov/user-guides/darshan
https://www.alcf.anl.gov/user-guides/darshan
https://www.alcf.anl.gov/user-guides/darshan
https://www.alcf.anl.gov/user-guides/darshan
http://www.nersc.gov/users/software/performance-and-debugging-tools/darshan/
http://www.nersc.gov/users/software/performance-and-debugging-tools/darshan/
http://www.nersc.gov/users/software/performance-and-debugging-tools/darshan/
http://www.nersc.gov/users/software/performance-and-debugging-tools/darshan/
http://www.nersc.gov/users/software/performance-and-debugging-tools/darshan/
http://www.nersc.gov/users/software/performance-and-debugging-tools/darshan/
http://www.nersc.gov/users/software/performance-and-debugging-tools/darshan/
http://www.nersc.gov/users/software/performance-and-debugging-tools/darshan/

Generating job summaries

* Run job and find its log file: Job id

pcarns@cori®@7:~/working/other/nersc-darshan-seminar-2017>—sbatciT{or -shared.sh
Submitted batch job 5598961 .
pcarns@cori@7:~/working/other/nersc-darshan-seminar-2017> 1ls /global/cscratchl/s (30rr95430rui”1g

d/darshanlogs/2017/6/29 |grep 5598961 Iog file in today’s
pcarns_ior_1id _6-29-62551-10312342380485257913_1.darshan

directory

3 < Copy out logs

— List logs

| . Load ‘_‘Iatex” module,
L (if needed)

Generate PDF

=w> U.S. DEPARTMENT OF Oﬂ-’lce Of \ ExASCAL =

2 S
ENERGY Science _\(\) —) coveuTRe

26

HANDS-ON 4: introduction to Darshan

1. Find the darshan log for the last exercise

)

2. View the raw counters with “darshan-parser’

3. Generate a report
— You might have to transfer PDF locally to view

4. Find the darshan log for the exercise #2
— Hint: you can’t!

A5 %>, U.S. DEPARTMENT OF Office of

EN ERGY Science

EEEEEEEE
EEEEEEE

27

/O benchmarking challenges

« Variability

— Storage systems shared, mechanical
« Caching

— Watch out for “speed of light” violations
« Ganging

— Be sure you are timing what you think you are timing

ENTOp
SIENTOFy
SERD
S/ el \&
& \%
%)\ u)3}
N /&
N 7
Rttt
ZATES OF

U.S. DEPARTMENT OF Ofﬂce Of

EN ERGY Science

J EXASCALE
COMPUTING
PROJECT

/O benchmarking: variability

« Silicon (e.g. Read from DRAM, multiply 100 integers) pretty stable
— E.g. easy to observe register, L1, L2, memory, swap behavior

* Write to disk... less stable
— How many users are also writing? How full is disk?

* |/O experiments cannot be short, one-offs
— ldeal: run each experiment cfg a dozen times, sized to run for about a minute
— Reality: supercomputer time is precious

* Try out the variance example in hands-on repository

:/‘x‘""‘"”’\f\'f{\z,% U.S. DEPARTMENT OF Oﬁlce Of

EN ERGY Science _\(

"— \
\ EXASCALE

) —) COMPUTING
PROJECT

28

/O benchmarking: caching

« Caching at every layer of storage
— Disk drive, Raid controller, Server RAM, Compute node SSD

« Storage expensive; vendors don'’t give stuff away
— If spec says “240 GB/sec”, you ain’t getting 250 GB/sec

yxﬁ U.S. DEPARTMENT OF Office of

EN ERGY Science

29

J EXASCALE
COMPUTING
PROJECT

/O benchmarking: ganging

 Fast-finisher problem
— Maybe a caching or aggregation layer resulted in less work for one process

« Staggered-start problem
— Probably want all processes writing/reading at once

e variance code example

— MPI_Barrier() before timing
— MPI_Reduce() to find maximum time

U.S. DEPARTMENT OF Ofﬂce Of

EN ERGY Science _\(

"‘ \
\ EXASCALE

) —) COMPUTING
PROJECT

ENTOp
SIENTOFy
< O
S e \E
& \&
- =
RN
DTS g

31

Bonus topic: “Game of Life” 1/0

* Next stepping stone between toy array i/o and full application

* More sophisticated use of MPI datatypes, communication
— “ghost cell” optimization heavily used in nearest-neighbor pattern

« Using “duplicated communicator” to separate library, application communication

« Also demonstrates a way to link different approaches

AR, U.S. DEPARTMENT OF Office of

© ENERGY s:cnoe

—

T \
\ J EXASCALE
) COMPUTING

PROJECT

Rules for Life (you’ve probably seen this before)

« Matrix values A(i,)) initialized to 1 (live) or O (dead)

* In each iteration, A(i,j) is set to
— 1 (live) if either
» the sum of the values of its 8 neighbors is 3, or
 the value was already 1 and the sum of its 8 neighbors is 2 or 3
— 0 (dead) otherwise

= < = < =
e N ke Y e
= % A/ N2
I-1
A 7|~ 7|~
~ - ~ - ~
= < =
e N e
. 4 A /
I ;S ’ ;S
~ - ~
= < = < =
e N ke Y e
/ N\ N

I+1

1)+

All code examples in this tutorial can be found in hands-on repo:
xgitlab.cels.anl.gov/ATPESC-10/hands-on

—

6 “"\”""»':,ﬂ U.S. DEPARTMENT OF Offlce Of

: (’“ EN ERGY Science _\(_— \) —) i

32 32

Decomposition and Boundary Regions

« Decompose 2d array into rows, shared across processes
 |n order to calculate next state of cells in edge rows, need data from adjacent rows

 Need to communicate these regions at each step

Rows

Columns

o“"’\”"’i'»-y,/ U.S. DEPARTMENT OF Oﬁ-’lce Of

£ \
@ENERGY cice E(C)P HE5E

33 33

34

Life Checkpoint/Restart API

Define an interface for checkpoint/restart for the row-block distributed Life code

Five functions:

— MLIFEIO_Init

— MLIFEIO_Finalize

— MLIFEIO_Checkpoint
— MLIFEIO_Can_restart
— MLIFEIO_Restart

All functions are collective
— Ii.e., all processes must make the call

We can implement API for different back-end formats
— Insulate main code from I/O details:
— back-end also makes good spot for tuning

EER, U.S. DEPARTMENT OF Office of \ EXASCALE

EN ERGY Science _\(\) — PROOECT

34

Life Checkpoint

* MLTFETIO Checkpoint (char *prefix,
o int **matrix,

int rows,

int cols,

int iter,

MPI Info info);

Prefix i1s used to set filename

Matrix is a reference to the data to store
Rows, cols, and iter describe the data (header)

Info Is used for tuning purposes

:/%5"‘\"“7!)\{.\":},% U.S. DEPARTMENT OF Oﬁ-’lce Of

EN ERGY Science _\(

"— \
\ EXASCALE

) —) COMPUTING
PROJECT

35

Life stdout “checkpoint”

* The first implementation is one that simply
prints out the “checkpoint” in an easy-to-read

format # lteration 9

1- ** ** ** *k %
2- * k% * * * * *kkk % * *k*% *%*
% *%* ** * * k% k% * **

* MPI standard does not specify that all stdout 3 * KRR
will be collected in any particular way 5 xR ek e ks
72
8

— Pass data back to rank 0 for _ e
printing B e« T e e

11: * ** *% ** * %
—_ Portablel 12: * k% *kkk * k% kkkk *
13: ** *kk K Kk * *kk * *
14: * k% % * * kkk

— Not scalable, but ok for the 1e: kkkx ek k%
purpose Of Stdlo 16 *k* **::** e **: ****:

*kk * kk kk%k * * kkkkk kkk k)%

17:
18: Kkk -
19: * k% *% * *% *
20: * * * k% *% kK
21:** * *k * % % kk Kkk * * Kk
22: * Kk *k kx kkkk * K% * * kkk kk
23: * Kk kkkk kkk kkk * * % *k %
24: *kk * % K% * K,kkk K
25: Kokk *% -
: “—
GER, U-S: DEPARTMENT OF Office of \\ el e
2)3 . e —) COMPUTING
EN ERG I Science \() PROJECT

36 36

37

stdio Life Checkpoint Code Walkthrough

 Points to observe:
— All processes call checkpoint routine
» Collective I/O from the viewpoint of the program
— Interface describes the global array
— Output is independent of the number of processes

\/9».\)2“‘2{'!53,_% U.S. DEPARTMENT OF Oﬂ-’lce Of

ENERGY Science

37

J EXASCALE
COMPUTING
PROJECT

File:

O O Joy Ui

mlife-io-stdout.c Page 1 of 8
/* SLIDE: stdio Life Checkpoint Code Walkthrough */

/* —k =

/*

* (C)

*

*/

Mode: C; c-basic-offset:4 ; -*- */

2004 by University of Chicago.
See COPYRIGHT in top-level directory.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#include "mlife.h"
#include "mlife-io.h"

/* stdout implementation of checkpoint (no restart) for MPI Life

*

* Data output in matrix order: spaces represent dead cells,
* I'*!'s represent live ones.

*/

static

static
static

static

IintCMLIFEIO Type create rowblk pint **matrix, int myrows,
int cols,

MPI Datatype *newtype);
void MLIFEIO Row print (int *data, 1int cols, int rownr);
void MLIFEIO msleep (int msec);

MPI Comm mlifeio_comm = MPI COMM NULL;

38

File: mlife-io-stdout.c Page 2 of 8

29: /* SLIDE: stdio Life Checkpoint Code Walkthrough */
30: int MLIFEIO Init (MPI Comm comm)

31: |

32: int err;

33:

34: err = comm, ¢mlifeio comm);
35:

36: return err;

37: }

38:

39: int MLIFEIO Finalize (void)

40: |

47 int err;

42

43: err = MPI Comm free(&mlifeio comm) ;
44 .

45: return err;

46: }

File: mlife-io-stdout.c Page 3 of 8

47: /* SLIDE: Life stdout "checkpoint" */
48: /* MLIFEIO Checkpoint

49. «*

50: * Parameters:

51: * prefix - prefix of file to hold checkpoint (ignored)

52: * matrix - data wvalues

53: * rows - number of rows in matrix

54: * cols - number of columns in matrix

55: * iter - iteration number of checkpoint

56: * info - hints for I/0 (ignored)

57: *

58: * Returns MPI SUCCESS on success, MPI error code on error.
59: */

60: int MLIFEIO Checkpoint (char *prefix, int **matrix, 1INT rows,
61: int cols, 1int iter
62: |

63: int err = MPI SUCCESS, rank, nprocs, myrows, myoffset;
64 : MPI Datatype type;

65:

66: MPI Comm size (mlifeio comm, &nprocs);

67 : MPI Comm rank(mlifeio comm, &rank);

68:

69: myrows = MLIFE myrows (rows, rank, nprocs);

70 myoffset = MLIFE myrowoffset (rows, rank, nprocs);

71:

File:

72
73:
74
75:
76:
77
78:
79:
80:
81:
82:
83:
84 :
85:
86:
87:
88:
89:
90:
91:

mlife-io-stdout.c

/* SLIDE: Describing Data */

if

}

(rank !'= 0) {
/* send all data to rank 0 */

MLIFEIO Type create rowblk(matrlx, myrows, cols, &type);

err = MPI _Send 1, type

else {

int i1, procrows, totrows;
printf (, 1lter);

/* print rank 0 data first */
for (i=1; i < myrows+1l; i++) {

MLIFEIO Row print (&matrix[i][1l], cols, 1);
}

totrows = myrows;

Page 4 of 8

0, 1, mlifeio comm);

41

File: mlife-io-stdout.c Page 5 of 8
92: /* SLIDE: Describing Data */

93: /* receive and print others’ data */
94 . for (i=1; i < nprocs; i++) {
95: int j, *data;
96:
97: procrows = MLIFE myrows (rows, 1, nprocs);
98: data = (int *) malloc (procrows * cols * sizeof (int));
99:
100: err = MPI Recv (data, Jprocrows * cols, MPI INT, i, 1,
101: miifeio comm, MPI STATUS IGNORE) ;
102:
103: for (3=0; J < procrows; Jj++) {
104: MLIFEIO Row print(&data[j * cols], cols,
105: totrows + j + 1);
106: }
107: totrows += procrows;
108:
109: free (data) ;
110: }
111: }
112:
113: MLIFEIO msleep(250); /* give time to see the results */
114:
115: return err;

116: }

Describing Data

Need to save this region in
the array

e

matrix[1][0..cols+1]

matrix[myrows][0..cols+1]

 Lots of rows, all the same size
— Rows are all allocated as one big block

— Perfect for MPI_Type_vector

MPI_Type_ vector(count = myrows,
blklen = cols, stride = cols+2, MPI_INT, &vectype);

— Second type gets memory offset right (allowing use of MPI_ BOTTOM in
MPI_File write all)

MPI_Type hindexed(count =1, len =1,
disp = &matrix[1][1], vectype, &type);

See mlife-io-stdout.c pp. 4-6 for code example.

{Jf'\\:iiﬁ"l<ﬁ U.S. DEPARTMENT OF Oﬁlce Of

\
@ENERGY sicne E(CP 2E°
s

43 43

File:

117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
128:
129:
130:
131:
132:
133:
134:
135:
136:
137:
138:
139:
140:
141:
142:
143:
144:
145:

mlife-io-stdout.c Page 6 of 8

/* SLIDE: Describing Data */

/* MLIFEIO Type create rowblk

*
Creates a MPI Datatype describing the block of rows of data
for the local process, not including the surrounding boundary
cells.

b S R

Note: This implementation assumes that the data for matrix is
* allocated as one large contiguous block!

*/

static 1nt MLIFEIO Type create rowblk (int **matrix, int myrows,
int cols,

MPI Datatype *newtype)

int err, len;
MPI Datatype vectype;
MPI Aint disp;

/* since our data is in one block, access is very regular! */

err = MPI Type vector (myrows, cols, cols+2, MPI INT,
&vectype) ;

1f (err != MPI SUCCESS) return err;

/* wrap the vector in a type starting at the right offset */

&matrix[l] (1], &disp);
err—-MPI Type hindexed(l, &len, &disp, vectype, newtype);

MPI Type free(&vectype); /* decrement reference count */

44

File: mlife-io-stdout.c

146:

147: return err;

148: }

149:

150: static void MLIFEIO Row print (int *data,
151: {

152: int 1i;

153:

154: printf (, rownr) ;

155: for (1i=0; 1 < cols; 1i++) {

156: printf (, (data[i] == BORN) 2
157: }

158: printf () ;

159: }

160:

161: int MLIFEIO Can restart (void)

162:
g
104:

165:

Page 7 of 8

int cols, 1int rownr)

1l66: int MLIFEIO Restart (char *prefix, int **matrix, int rows,
167: int cols, int iter, MPI Info info)

168: {
170: }

45

EEEEEEEEEEEEEEEEEEEEEEEE

Next steps: thinking about
/O Interfaces for parallel
programming (MPI-10)

' FaR Office of N \ / Sg“i
exascal € p rOJ eCt -0 rg ". ,s; E N E RGY Science National Nuc&SecuﬂryAdminisTr;E:

